
Assessing the Performance of the Open-Source Linear

Programming Solver in Cell Suppression Problems

Haoluan Chen, Steven Thomas
Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, ON, K1A 0T6

Abstract
The current implementation of complementary cell suppression methodology at Statistics Canada

relies on a linear programming (LP) solver finding the feasible solution in SAS. As an alternative,

open-source LP solvers are being investigated. Among these solvers, it is not clear which one

would perform better for the suppression problem until we actually use them and assess

performance. Therefore, a Python version of suppression was implemented using open-source

linear programming packages. There are several challenges in comparing the performance of

solvers. For example, it is difficult to assess the solution of the linear programming problem since

the heuristic method requires solving the LP problem sequentially. This presentation discusses the

performance of alternative solvers in relation to typical suppression problems.

Key Words: Confidentiality, Cell Suppression, Linear Programming

1. Introduction

G-Confid1 is a tabular confidentiality system developed at Statistics Canada. It can be used to

identify sensitive cells, create and validate a complementary cell suppression (CCS) pattern for

economic data at various aggregate levels. The current implementation involves solving a series of

linear programming (LP) problems with the SAS/OR® LP solver to find a feasible solution. There

are many alternative open-source LP solvers that may provide compatible performance. Statistics

Canada has developed a Python prototype that integrates open-source LP packages as a means to

evaluate the capabilities of these solvers.

The paper covers the linear programming formulation and implementation details for the CCS

strategy as it is currently performed. A comparison between G-Confid and the Python prototype

implementation in terms of speed and suppression quality will be detailed. Lastly, we will discuss

the findings and challenges in developing and comparing the alternative solution.

2. Methodology of SUPPRESS

The main objective of the G-Confid macro SUPPRESS is to find complementary cells that provide

the desired protection level to the sensitive cells (those presenting a disclosure risk) while

minimizing the loss of information. The sensitive cells would have been identified using a linear

sensitivity measure as discussed by Cox (1981). The loss of information could be represented by

the number of cells being suppressed or the total value of the suppressed cells. To determine the

CCS pattern, the macro is solving the following linear programming problem for each of the

primary sensitive cell 𝑋𝑠𝑒𝑛(Frolova 2013).

Matrix formulation of LP Problem (to find X and Y that minimizes the objective function):

Minimize 𝑊′𝑋 + 𝑊′𝑌

Subject to 𝐶𝑋 − 𝐶𝑌 = 0 (Constraint 1)

 0 ≤ 𝑋, 𝑌 ≤ 𝑇 (Constraint 2)

1 Available for download at https://www150.statcan.gc.ca/n1/en/catalogue/10H0109.

 𝑥𝑠𝑒𝑛 ≥ 𝑆𝑠𝑒𝑛 (Constraint 3)

 𝑦𝑠𝑒𝑛 = 0 (Constraint 4)

Where

W: n-dimensional vector of weight/cost, where n is the total number of cells in a table

X: n-dimensional vector of positive shifts to cell totals

Y: n-dimensional vector of negative shifts to cell totals

C: m × n matrix of coefficients, where m = number of linear equations generated by the table.

T: n-dimensional vector of cell totals

𝑥𝑠𝑒𝑛: the component of the vector X corresponding to the current sensitive cell

𝑦𝑠𝑒𝑛: the component of the vector Y corresponding to the current sensitive cell

𝑆𝑠𝑒𝑛: sensitivity of 𝑋𝑠𝑒𝑛

For each sensitive cell, we are solving an LP problem. Given the sensitivity of a cell, which

indicates the protection required, the LP problem is trying to find the cells that can provide the

required amount of protection at the lowest cost. X and Y (considered ‘shifts’ to the table) are the

variables in our objective function to which we want to assign values such that they minimize the

objective function. There are also constraints to our problem. Constraint 1 forces the additivity of

our table. Constraint 2 states that a cell can only provide protection up to its total and the shifts

cannot be negative. Constraint 3 forces the positive shift of the current sensitive cell to be the

sensitive value indicating the protection needed, then we find the corresponding shifts to maintain

the additivity of the table. The last constraint forces Y for the current sensitive cell to be 0. In the

end, all cells that are shifted are suppressed to protect the sensitive cell. The process is repeated

sequentially for all the sensitive cells in the table.

Among all suppression patterns, we would like to select the one that minimizes the cost of

suppression in the table. That is to minimize W'X+W’Y. Our objective function is to describe the

cost of suppression. In G-Confid, we can choose from four values for the weight / cost vector

corresponding to different costs of suppression of a cell. The use of different cost vectors will

result in different suppression patterns. The “Constant” form of the objective function assigns an

equal cost of suppression to each non-sensitive cell (𝑤𝑖 = 1), which may lead to suppressing fewer

cells with a larger total. The “Size” objective function assigns a cell’s total value as the cost (𝑤𝑖 =
𝑡𝑖), which leads to suppression of the smaller cells. The “Information” objective function assigns

the cost to be 𝑤𝑖 =
log (1+ 𝑡𝑖)

1+𝑡𝑖
 . This objective function leads to suppression of a small number of

large cells, as it is a decreasing function of 𝑡𝑖. Lastly, the “Digit” objective function assigns the

cost to be 𝑤𝑖 = log (1 + 𝑡𝑖), which balances between the Size and Information objective

function. The default objective function in G-Confid is “Digit”. For any objective function, the

cost of suppressing primary sensitive cells is equal to zero, because it must be suppressed to

protect confidential data.

3. Performance Comparison

We reprogrammed G-Confid in Python based on the LP formulation described in section 2. We

ran four test cases on an AMD EPYC 7763 64-Core Processor with 8 GB of RAM to assess the

time took to solve the whole CCS problem. To compare the performance, we put timers

throughout the code to capture the data processing time between solving LP problems as well as

the time for solving the LP problem. We found that the data manipulation part between iterations

was negligible. Also, note that the four test cases cover a variety of complexity in terms of size

and number of primary sensitive cells. The optimality is measured using the number of cells

suppressed and the total values suppressed.

3.1 Modeling Packages and Solvers

In order to solve the objective function described above a linear programing optimization solution

is required. In G-Confid, we have relied on the SAS solution offered with PROC OPTMODEL2.

This solution offered a reasonable CCS pattern in terms of optimality and speed. PuLP is an open-

source LP modeling Python package that allow user to connect to various solvers, including both

open-source solvers and commercial solvers, such as CLP, SCIP, GLPK, CPLEX, GUROBI and

many more. Although PuLP provides high flexibility in the solvers that it can use, it comes with

several limitations, which will be covered in Section 4. Based on our experience with the creation

of a Python based additive rounding program, which solves a Mixed Integer Linear Programming

(MILP) problem, the SCIP solver demonstrated promising results in term of speed and solution

quality. Thus, the PySCIPOpt Python package that is built as an interface for the SCIP

optimization suite was also included in the comparison. In the next section the performance of

PuLP-CLP and PySCIPOpt-SCIP and SAS-OPTMODEL are evaluated and compared.

3.2 Performance

Table 1: Runtime and Optimality comparison between four solvers in four testing scenarios

In example 1, we see that all of the solvers can solve the problem in a very short period of time

and they found the same suppression pattern. As the table complexity (size and number of

constraints) increases and as the number of primary sensitive cells increases, PySCIPOpt-SCIP

and PuLP-CLP started to over-suppress slightly as shown in the example 2 table. As we move on

to tables with thirty thousand cells, we also see that PySCIPOpt-SCIP and PuLP-CLP are over

suppressing and are slower compared to SAS. For the largest table in the experiment, PySCIPOpt-

SCIP took about five hours to complete, where Pulp-CLP took about one hour, and SAS took only

thirteen minutes.

3.3 Findings
Although not described here, we also found that there are cases that were solved by SAS but were

not solved by the open-source solvers and vice versa. However, in terms of time, SAS is relatively

faster among the three and produce much better suppression patterns.

The analysis was limited to the scenarios above to ensure that we have a feasible solution for each

solver. It seems clear that problems in terms of speed and optimization are observed in these

2 https://support.sas.com/documentation/onlinedoc/or/132/optmodel.pdf

‘simple’ examples. For context, at Statistics Canada, it is reasonable to see tables of size 50k cells

and 25k primary sensitive cells, where SAS typically takes around two hours to complete. These

‘real world’ examples were tested on the Python solvers, but the Python versions failed to solve

the problem.

Through these experiments, it was discovered that PuLP has insufficient precision. For example, if

we had a sensitivity value of one million and one, then in our constraint, it would require the

positive shift for this sensitive cell to be larger or equal to one million and one. However, with

PuLP, the positive shift would be just one million.

4. Challenges

There were several challenges experienced throughout the project. From the current G-Confid

implementation, there were programming steps that were efficient in SAS but did not offer the

same efficiency when the ideas were reimplemented in Python.

Additionally, it was difficult to spot bugs in the programs because of the heuristic algorithm. It is

not clear why specific open-source solvers were over-suppressing for larger tables when they were

able to find the exact same result as SAS in the simpler tables.

It was also hard to predict the outcome with different solver and solver options in terms of

success, quality and time. For PySCIPOpt, it has numerous solver options that you can tune and

adjust for your specific problems, which PuLP does not have. We experimented with various LP

algorithms and various scaling in PySCIPOpt, but it did not have a significant effect on the run

time. In general, the effect of different solver and solver options was only observed with specific

experiments. As we see from the examples, solvers may produce different patterns and there is no

guarantee if it is the best pattern, and it is difficult to understand the reasons why we see the

difference.

Lastly, moving to Python does not seem to help to solve some of our specific problem cases. G-

Confid was having numerical instability with some extreme input data. Although not shown in this

paper, the python version also has trouble solving it.

5. Conclusion and Future Work

In this paper, we reimplemented the complementary cell suppression algorithm that is currently

available in the SAS-based solution G-Confid. The Python programming language was studied

with two open-source linear programming solvers PuLP-CLP and PySCIPOpt-SCIP. The

experiments suggested that the open-source solvers were capable of solving tables with moderate

complexity within reasonable amount of time. However, as the complexity increased, the open-

source solvers offered less optimal solutions in longer times when compared to SAS.

In the future, we hope to experiment with commercial linear programming solvers including

CPLEX, GUROBI and SCIPY to study if they offer performance similar to what was shown by

Meindl (2013) and compare those solutions to our SAS solution. If necessary, we can move to

different mathematical formulation of the complementary cell suppression problem. We are also

considering different architecture including cloud infrastructure and hope that will allow the

Python solution to achieve similar performance compared to SAS.

References

Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen, J.,

… Witzig, J. (2021). The SCIP Optimization Suite 8.0. Retrieved from Optimization

Online website: http://www.optimization-online.org/DB_HTML/2021/12/8728.html

C. M. Sullivan, An overview of disclosure principles, U.S. Bureau of the Census Research Report

Series (1992), RR–92/09

Cox, L. H. (1981). Linear sensitivity measures in statistical disclosure control. Journal of

Statistical Planning and Inference, 5(2), 153–164.

Frolova, O., Fillion, J.-M., and Tambay, J.-L., Confid2: Statistics canada’s new tabular data

confidentiality software, Proceedings of the Survey Methods Section, SSC (2009)

Meindl, Bernhard & Templ, Matthias. (2013). Analysis of Commercial and Free and Open Source

Solvers for the Cell Suppression Problem. Tansaction on Data Privacy. Volume 6. 147-

159.

Mitchell, S., Kean, A., Mason, A., O'Sullivan, M., Phillips, A., Peschiera, F., Optimization with

PuLP- PuLP 2.7.0 documentation Optimization with PuLP — PuLP 2.7.0 documentation

(coin-or.github.io)

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://coin-or.github.io/pulp/
https://coin-or.github.io/pulp/

